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Abstract—We present a family of robust techniques for
exploiting sensitivities in electromagnetic (EM)-based circuit
optimization through space mapping (SM) technology. We utilize
derivative information for parameter extractions and mapping
updates. We exploit a partial SM (PSM) concept, where a re-
duced set of parameters is sufficient for parameter extraction
optimization. It reflects the idea of tuning and execution time is
reduced. Upfront gradients of both EM (fine) model and coarse
surrogates can initialize possible mapping approximations. We
introduce several effective approaches for updating the mapping
during the optimization iterations. Examples include the classical
Rosenbrock function, modified to illustrate the approach, a
two-section transmission-line 10:1 impedance transformer and a
microstrip bandstop filter with open stubs.

Index Terms—CAD, design automation, electromagnetic (EM)
simulation, EM optimization, microwave filters, optimization
methods, space mapping.

I. INTRODUCTION

USING an electromagnetic (EM) simulator (“fine” model)
inside an optimization loop for the design process of mi-

crowave circuits can be prohibitive. Designers can overcome
this problem by simplifying the circuit through circuit theory
or by using the EM simulator with a coarser mesh. The space
mapping (SM) approach [1], [2] relates a fine model to a phys-
ically based “coarse” surrogate. The fine model may be time
intensive, field theoretic, and accurate, while the surrogate is a
faster, circuit based, but less accurate, representation. SM intro-
duces an efficient way to describe the relationship between the
fine model and its surrogate. It makes effective use of the fast
computation ability of the surrogate, on the one hand, and the
accuracy of the fine model, on the other.

Surrogates in the context of filter design have been exem-
plified by Snel [3]. Practical benefits of empirical surrogates
have also been demonstrated by Swanson and Wenzel [4]. They

Manuscript received March 26, 2002; revised August 13, 2002. This work was
supported in part by the Natural Sciences and Engineering Research Council
of Canada under Grant OGP0007239 and Grant STR234854-00, through the
Micronet Network of Centres of Excellence and Bandler Corporation.

J. W. Bandler is with the Simulation Optimization Systems Research
Laboratory, Department of Electrical and Computer Engineering, McMaster
University, Hamilton, ON, Canada L8S 4K1 and also with the Bandler
Corporation, Dundas, ON, Canada L9H 5E7 (e-mail: bandler@mcmaster.ca).

A. S. Mohamed is with the the Simulation Optimization Systems Research
Laboratory, Department of Electrical and Computer Engineering, McMaster
University, Hamilton, ON, Canada L8S 4K1.

M. H. Bakr is with the Department of Electrical and Computer Engineering,
McMaster University, Hamilton, ON, Canada L8S 4K1.

K. Madsen and J. Søndergaard are with Informatics and Mathematical Mod-
eling, Technical University of Denmark, DK-2800 Lyngby, Denmark.

Digital Object Identifier 10.1109/TMTT.2002.805188

achieved optimal mechanical adjustments by iterating between
a finite element simulator and circuit simulator.

SM optimization involves the following steps. The “surro-
gate” is optimized to satisfy design specifications [5], thus pro-
viding the target response. A mapping is proposed between the
parameter spaces of the fine model and its surrogate using a pa-
rameter extraction (PE) process. Then, an inverse mapping es-
timates the fine-model parameters corresponding to the (target)
optimal surrogate parameters.

We present, for the first time, new techniques to exploit exact
sensitivities in EM-based circuit design in the context of SM
technology. If the EM simulator is capable of providing gra-
dient information, these gradients can be exploited to enhance
a coarse surrogate. New approaches for utilizing derivatives in
the parameter extraction process and mapping update are pre-
sented.

We introduce also a new SM approach exploiting the con-
cept of partial SM (PSM). Partial mappings were previously
suggested in the context of neural space mapping [6]. Here, an
efficient procedure exploiting a PSM concept is proposed. Sev-
eral approaches for utilizing response sensitivities and PSM are
suggested.

Exact sensitivities have been developed for nonlinear, har-
monic-balance analyses [7], as well as implementable approxi-
mations such as the feasible adjoint sensitivity technique [8]. In
the 1990s, Alessandriet al.spurred the application of the adjoint
network method using a mode matching orientation [9]. Cur-
rently, we are developing the adjoint technique within a method
of moments environment [10], [11]. These techniques facili-
tate powerful gradient-based optimizers. Our new work comple-
ments these efforts at gradient estimation for design optimiza-
tion using EM simulations.

II. A GGRESSIVESPACE MAPPING

A. Original Design Problem

The original design problem is

(1)

Here, the fine-model response vector is denoted by ,
e.g., at selected frequency points, whereis the number
of sample points. The fine-model point is denoted ,
where is the number of design parameters.is a suitable ob-
jective function. For example, could be the minimax objective
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function with upper and lower specifications. is the optimal
design to be determined.

B. Parameter Extraction (PE)

PE is a crucial step in any SM algorithm. In PE, an opti-
mization step is performed to extract a coarse-model point
corresponding to the fine-model point that yields the best
match between the fine model and its surrogate. The informa-
tion stored in the design responsemay not be sufficient to de-
scribe the system under consideration properly. Thus, using only
the design response in the PE may lead to nonuniqueness prob-
lems. Therefore, we need to obtain more information about the
system and exploit it to extract the “best” coarse point and avoid
nonuniqueness. For example, we may use responses such as real
and imaginary parts of parameters in the PE, even though we
need only the magnitude of to satisfy a certain design crite-
rion. Now, we can assemble all the responses needed in the PE
into one vector and define a new term, called a complete set of
basic responses. The complete set of basic responses is desig-
nated by , where , is the number
of simulation frequency points, and is the number of basic
responses. In this context, the fine and its surrogate (coarse) re-
sponses are denoted by and , respectively. The traditional
PE is described by the optimization problem

(2)

C. Aggressive SM Approach

Aggressive SM solves the nonlinear system

(3)

for , where is a mapping defined between the two model
spaces and is the corresponding point in the coarse
space, . First-order Taylor approximations are given
by

(4)

This can be described as

(5)

where the Jacobian of at the th iteration is expressed by

(6)

Equation (5) illustrates the nonlinearity of the mapping, where
is related to through the PE process which is a non-

linear optimization problem. Recalling (4) and (5), we state a
useful definition of the mapping Jacobian at theth iteration

(7)

We designate an approximation to this Jacobian by the square
matrix , i.e., .

From (3) and (5), we can formulate the system

(8)

which can be rewritten in the useful form

(9)

Solving (9) for , the quasi–Newton step in the fine space
provides the next tentative iterate

(10)

III. PROPOSEDALGORITHMS

A. PE Exploiting Sensitivity

We exploit the availability of the gradients of the fine model
and surrogate responses to enhance the PE process. The Jaco-
bian of the fine-model basic responsesat and the corre-
sponding Jacobian of the surrogate responsesat can be
obtained. Adjoint sensitivity analysis could be used to provide
the exact derivatives, while finite differences are employed to es-
timate the derivatives if the exact derivatives are not available.
Here, we present a new technique to formulate the PE to take
into account not only the responses of the fine and its surrogate,
but the corresponding gradients as well.

Through the traditional PE process, as in (2), we can obtain
the point that corresponds to , such that

(11)

Differentiating both sides of (11) with respect to, we obtain

(12)

Using (7), the relation (12) can be simplified to [12]

(13)

where and . Relation (13) assumes that is
full rank and , where is the dimensionality of both

and . Solving (13) for yields a least-squares solution
[12]

(14)

At the th iteration we obtain through a gradient param-
eter extraction (GPE) process. In GPE, we match not only the
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Fig. 1. Partial space mapping (PSM).

responses, but also the derivatives of both models through the
optimization problem

(15)
where is a weighting factor, , and

(16)

The nonuniqueness in the PE may lead to divergence or os-
cillatory behavior. Exploiting available gradient information en-
hances the uniqueness of the PE process. It also reflects the idea
of multipoint extraction (MPE) [13], [14] in which simultaneous
matching of a number of points of both spaces takes place.

B. PSM

Utilizing a reduced set of the physical parameters of the
coarse space might be sufficient to obtain an adequate surrogate
for the fine model. A selected set of the design parameters are
mapped onto the coarse space, and the rest of them ( )
are directly passed. The mapped coarse parameters are denoted
by , , where is the number of design
parameters. PSM is illustrated in Fig. 1. It can be represented
in the matrix form by

(17)

In this context, (13) becomes

(18)

where and is the Jacobian of
the coarse model at . Solving (18) for yields the
least-squares solution at theth iteration

(19)

Relation (9) becomes underdetermined since is a fat rect-
angular matrix, i.e., the number of columns is greater than the
number of rows. The minimum norm solution for is given
by

(20)
The coarse-model parameters used in the PE can be

determined by the sensitivity analysis proposed by Bandleret al.

[15]. It chooses the parameters that the coarse-model response
is sensitive to.

C. Mapping Update Alternatives

If we have exact derivatives of both the fine and coarse model,
we can use them to obtain at each iteration using a least-
squares solution as in (14). Note that this matrix can be itera-
tively fed back into the GPE process and refined before making
a step in the fine-model space. We can also use (19) to update

.
If we do not have exact derivatives, various approaches to

initializing or constraining and can be devised; for
example, we can use finite differences (perturbations). Either
matrix may be updated using a Broyden update [16]. Hybrid
schemes can be formally developed following the integrated
gradient approximation approach to optimization by Bandleret
al. [17]. One hybrid approach incorporates the use of pertur-
bations and Broyden formula. Utilizing this approach reduces
the effort of calculating exact derivatives. Perturbations are used
to obtain an initial good approximation to and at the
starting point. Then, the Broyden formula is used to update both
matrices in the subsequent iterations.

On the assumption that the fine and coarse models share the
same physical background, Bakret al. [18] suggested that
could be better conditioned, in the PE process, if it is constrained
to be close to the identity matrixby

(21)

where is a weighting factor and and are the th columns
of and , respectively, defined as

(22)

The analytical solution of (21) is given by

(23)

D. Proposed Algorithms

Algorithm 1 Full Mapping/GPE/Jacobian update
Step 1 Set . Initialize for the PE process. Obtain
the optimal coarse-model designand use it as the initial fine-
model point

(24)

Comment Minimax optimization is used to obtain the optimal
coarse solution.
Step 2 Execute a preliminary GPE step as in (15).
Comment Match the responses and the corresponding gradi-
ents.
Step 3 Refine the mapping matrix using Jacobians (14).
Comment A least-squares solution is used to refine a square
matrix using Jacobians.
Step 4 Stop if

or (25)
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CommentLoop until the stopping conditions are satisfied.
Step 5 Solve (9) for .
Step 6 Find the next using (10).
Step 7 Perform GPE as in (15).
Step 8 Update using (14).
CommentA least-squares solution is used to updateat each
iteration exploiting Jacobians.
Step 9 Set and go to Step 4.

Algorithm 2 Partial SM/GPE/Jacobian update
Step 1 Set . Initialize for the PE
process. Obtain the optimal coarse-model designand use it
as the initial fine-model point as in (24).
Step 2 Execute a preliminary GPE step as in (15).
Step 3 Refine the mapping matrix using (19).
CommentA least-squares solution is used to refine a rectan-
gular matrix using Jacobians.
Step 4 Stop if (25) holds.
CommentLoop until the stopping conditions are satisfied.
Step 5 Evaluate using (20).
CommentA minimum norm solution for a quasi-Newton step

in the fine space is used.
Step 6 Find the next using (10).
Step 7 Perform GPE as in (15).
Step 8 Use (19) to update .
CommentA least-squares solution is used to update at
each iteration.
Step 9 Set and go to Step 4.

Algorithm 3 Partial SM/PE/Hybrid approach for mapping
update
Step 1 Set . Initialize for the PE
process. Obtain the optimal coarse-model designand use it
as the initial fine-model point as in (24).
Step 2 Execute a preliminary traditional PE step as in (2).
Step 3 Refine the mapping matrix using (19).
CommentA least-squares solution is used to refine a rectan-
gular matrix using Jacobians.
Step 4 Stop if (25) holds.
CommentLoop until the stopping conditions are satisfied.
Step 5 Evaluate using (20).
Step 6 Find the next using (10).
Step 7 Perform traditional PE as in (2).
Step 8 Update using a Broyden formula.
CommentA hybrid approach is used to update .
Step 9 Set and go to Step 4.

The output of the algorithms is the fine space mapped optimal
design and the mapping matrix (Algorithm 1) or
(Algorithms 2 and 3).

IV. EXAMPLES

A. Rosenbrock Banana Problem [12], [19]

Test problems based on the classical Rosenbrock banana
function are studied. We let the original Rosenbrock function

(26)

Fig. 2. Contour plot of the “coarse” original Rosenbrock banana function.

Fig. 3. Contour plot of the “fine” shifted Rosenbrock banana function.

be a “coarse” model. The optimal solution is .
A contour plot is shown in Fig. 2.

Case 1: Shifted Rosenbrock Problem:We propose a “fine”
model as a shifted Rosenbrock function

(27)
where

(28)

The optimal fine-model solution is
(see Fig. 3 for a contour plot).

We apply Algorithm 1. Exact “Jacobians” and are used
in the GPE process and in mapping update. The algorithm con-
verges in one iteration to the exact solution (see Table I).

Case 2: Transformed Rosenbrock Problem:A “fine” model
is described by the transformed Rosenbrock function

(29)
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TABLE I
“SHIFTED” ROSENBROCKBANANA PROBLEM

Fig. 4. Contour plot of the “fine” transformed Rosenbrock banana function.

where

(30)

The exact solution evaluated by the inverse transformation is
to seven decimals. A con-

tour plot is shown in Fig. 4. Applying Algorithm 1, we get a
solution, to a very high accuracy, in six iterations (see Table II
for details).

B. Capacitively Loaded 10:1 Impedance Transformer [20]

We apply Algorithm 2 to a two-section transmission line (TL)
10:1 impedance transformer. We consider a “coarse” model as
an ideal two-section TL, where the “fine” model is a capacitively
loaded TL with capacitors pF.The fine
and coarse models are shown in Figs. 5 and 6, respectively. De-
sign parameters are normalized lengthsand , with respect
to the quarter-wave length at the center frequency 1 GHz, and
characteristic impedances and . Normalization makes the
problem well posed. Thus, . De-
sign specifications are

for GHz GHz

with 11 points per frequency sweep. We utilize the real and
imaginary parts of in the GPE (15). The fine and surrogate
responses can be easily computed as a function of the design
parameters using circuit theory [21]. We solve (15) using the

TABLE II
“TRANSFORMED” ROSENBROCKBANANA PROBLEM

Fig. 5. Two-section impedance transformer: “fine” model.

Fig. 6. Two-section impedance transformer: “coarse” model.

TABLE III
COARSEMODEL SENSITIVITIES WITH RESPECT TO THEDESIGN PARAMETERS

FOR THECAPACITIVELY LOADED IMPEDANCETRANSFORMER

Levenberg–Marquardt algorithm for nonlinear least-squares op-
timization available in the Matlab Optimization Toolbox [22].

Case 1: Based on a sensitivity analysis [15] for the design
parameters of the coarse model shown in Table III we note that
the normalized lengths [ ] are the key parameters. Thus,
we consider , while
are kept fixed at the optimal values, i.e., and

. We employ adjoint sensitivity-analysis tech-
niques [23] to obtain the exact Jacobians of the fine and coarse
models. We initialize by using the Jacobian information
of both models at the starting point as in (19). The algorithm
converges in a single iteration (two fine-model evaluations). The
corresponding responses are illustrated in Figs. 7 and 8, respec-
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Fig. 7. Optimal coarse-model target response (—) and the fine-model response
at the starting point (�) for the capacitively loaded 10:1 transformer withL and
L as the PSM coarse-model parameters.

Fig. 8. Optimal coarse-model target response (—) and the fine-model response
at the final design (�) for the capacitively loaded 10:1 transformer withL and
L as the PSM coarse-model parameters.

tively. The final mapping is

This result confirms the sensitivity analysis presented in
Table III. It supports our decision of taking into account only
[ ], represented by the first and the second columns in

, as design parameters. As is well known, the effect of
the capacitance in the fine model can only be substantially
compensated by a change of the length of a TL. Therefore,
changes of [ ] hardly affect the final response.

The reduction of versus iteration is shown in
Fig. 9. The reduction of the objective functionin Fig. 10 also
illustrates convergence (two iterations).

Case 2: We apply Algorithm 2 for . The result
is similar to Fig. 8. Convergence is in a single iteration (two

Fig. 9. kxxx � xxx k versus iteration for the capacitively loaded 10:1
transformer withL andL as the PSM coarse-model parameters.

Fig. 10. U versus iteration for the capacitively loaded 10:1 transformer with
L andL as the PSM coarse-model parameters.

fine-model evaluations). The final mapping is

As we can see, changes in [] represented by the first ele-
ment in are significant. However, the second parameter
[ ] is affected also. This arises from the fact that [ ] have
the same physical effect; namely, that of length in a TL.

Case 3: We apply Algorithm 2 for . The result
is similar to Fig. 8 and it converges in a single iteration (two
fine-model evaluations). The final mapping is

As in case 2, changes in one parameter, [] in this case, have
a dominant role. This affects [ ], the parameter which shares
the same physical nature.

The initial and final designs for all three cases are shown in
Table IV. We realize that the algorithm aims to rescale the TL
lengths to match the responses in the PE process (see Fig. 7). In
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TABLE IV
INITIAL AND FINAL DESIGNS FOR THECAPACITIVELY LOADED

IMPEDANCE TRANSFORMER

Fig. 11. Bandstop microstrip filter with open stubs: “fine” model.

Fig. 12. Bandstop microstrip filter with open stubs: “coarse” model.

all cases, both [ ] are reduced by similar overall amounts,
as expected.

By carefully choosing a reduced set of design parameters, we
can affect other “redundant” parameters and the overall circuit
response as well, which implies the idea of tuning. Nevertheless,
the use of the entire set of design parameters should give the best
result.

C. Bandstop Microstrip Filter With Open Stubs [6]

Algorithm 3 is applied to a symmetrical bandstop microstrip
filter with three open stubs. The open-stub lengths are, ,

and the corresponding stub widths are , , . An
alumina substrate with thickness mil, width

mil, dielectric constant , and loss tangent

Fig. 13. Optimal OSA90/hope coarse target response (—) andemfine-model
response at the starting point (�) for the bandstop microstrip filter using a
fine frequency sweep (51 points) withL andL as the PSM coarse-model
parameters.

TABLE V
COARSE-MODEL SENSITIVITIES WITH RESPECT TODESIGN PARAMETERS

FOR THEBANDSTOPMICROSTRIPFILTER

is used for a 50- feeding line. The design parameters are
. The design specifications are

for GHz GHz

for GHz and GHz

Sonnet’sem [24] driven by Empipe [25] is employed as the
fine model, using a high-resolution grid with a 1 mil1 mil cell
size. As a coarse model, we use simple TLs for modeling each
microstrip section and classical formulas [21] to calculate the
characteristic impedance and the effective dielectric constant of
each TL. It is seen that , ,
and . We use OSA90/hope [25]
built-in TL elements TRL. The fine model and its surrogate
coarse model are illustrated in Figs. 11 and 12, respectively.

Using OSA90/hope, we can get the optimal coarse solution at
10 GHz as
(in mils). We use 21 points per frequency sweep. The coarse-
and fine-model responses at the optimal coarse solution are
shown in Fig. 13 (fine sweep is used only for illustration).
We utilize the real and imaginary parts of and in the
traditional PE. Sensitivity analysis for the coarse model is given
in Table V. During the PE, we consider
while are held fixed at the optimal
coarse solution. Finite differences estimate the fine and coarse
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Fig. 14. Optimal OSA90/hope coarse target response (—) andemfine-model
response at the final design (�) for the bandstop microstrip filter using a
fine frequency sweep (51 points) withL andL as the PSM coarse-model
parameters.

Jacobians used to initialize , as in (19). A hybrid approach
is used to update at each iteration.

Algorithm 3 converges in five iterations. The PE execution
time for the whole process is 59 min on an IBM-IntelliStation1

machine. The optimal coarse-model response and the final de-
sign fine response are depicted in Fig. 14. The convergence of
the algorithm is depicted in Fig. 15, where the reduction of

versus iteration is illustrated. The initial and final
design values are shown in Table VI. The final mapping is given
by

We notice that [ ], represented by the last two columns, are
dominant parameters.

We run Algorithm 3 using all design parameters in the PE and
in calculating the quasi-Newton step in the fine space, i.e., we
use a full mapping. The algorithm converges in five iterations,
however, the PE process takes 75 min on an IBM-IntelliStation
machine. The initial and final designs are given in Table VII.The
final mapping is

The reduction of versus iteration is shown in Fig. 16.
The notion of tuning is evident in this example also, where

the various lengths and widths which constitute the designable
parameters (see Fig. 11) have obvious physical interrelations.

1AMD Athlon, 400 MHz.

Fig. 15. kxxx � xxx k versus iteration for the bandstop microstrip filter using
L andL as the PSM coarse-model parameters.

TABLE VI
INITIAL AND FINAL DESIGNS FOR THEBANDSTOP MICROSTRIP

FILTER USINGL AND L

TABLE VII
INITIAL AND FINAL DESIGNS FOR THEBANDSTOPMICROSTRIPFILTER

USING A FULL MAPPING

D. Comparison With Previous Approaches

All SM-based algorithms, by their very nature, are expected
to produce acceptable designs in a small number of fine-model
evaluations, typically 3–10. Hence, a basis for comparison must
be simplicity, ease of programming, robustness on many ex-
amples and, in particular, avoidance of designer intervention.
Our extensive convergence results (Tables I and II, Figs. 9, 10,
15, and 16) of our gradient-based proposal demonstrate that we
averted false parameter extractions, do not require sophisticated
programming, and do not rely on designer intervention.
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Fig. 16. kxxx � xxx k versus iteration for the bandstop microstrip filter using
a full mapping.

V. CONCLUSIONS

We present a family of robust techniques for exploiting
sensitivities in EM-based circuit optimization through SM. We
exploit a PSM concept where a reduced set of parameters is
sufficient in the PE process. Available gradients can initialize
mapping approximations. Exact or approximate Jacobians of
responses can be utilized. For flexibility, we propose different
possible “mapping matrices” for the PE processes and SM
iterations. Finite differences may be used to initialize the
mapping. A hybrid approach incorporating the Broyden for-
mula can be used for mapping updates. Our approaches have
been tested on several examples. They demonstrate simplicity
of implementation, robustness, and do not rely on designer
intervention.

Final mappings are useful in statistical analysis and yield op-
timization. Furthermore, the notion of exploiting reduced sets of
physical parameters reflects the importance of the idea of post-
production tuning.
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