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Abstract—We present a family of robust techniques for achieved optimal mechanical adjustments by iterating between
exploiting sensitivities in electromagnetic (EM)-based circuit g finite element simulator and circuit simulator.
optimization through space mapping (SM) technology. We utilize SM optimization involves the following steps. The “surro-

derivative information for parameter extractions and mapping . . . o
updates. We exploit a partial SM (PSM) concept, where a re- gate” is optimized to satisfy design specifications [5], thus pro-

duced set of parameters is sufficient for parameter extraction Viding the target response. A mapping is proposed between the
optimization. It reflects the idea of tuning and execution time is parameter spaces of the fine model and its surrogate using a pa-
reduced. Upfront gradients of both EM (fine) model and coarse rameter extraction (PE) process. Then, an inverse mapping es-
surrogates can initialize possible mapping approximations. We ;415 the fine-model parameters corresponding to the (target)
introduce several effective approaches for updating the mapping -

during the optimization iterations. Examples include the classical optimal surrogate pargmet_ers. ] )
Rosenbrock function, modified to illustrate the approach, a  We present, for the first time, new techniques to exploit exact

two-section transmission-line 10:1 impedance transformer and a sensitivities in EM-based circuit design in the context of SM
microstrip bandstop filter with open stubs. technology. If the EM simulator is capable of providing gra-
Index Terms—CAD, design automation, electromagnetic (EM) dient information, these gradients can be exploited to enhance
simulation, EM optimization, microwave filters, optimization g coarse surrogate. New approaches for utilizing derivatives in
methods, space mapping. the parameter extraction process and mapping update are pre-
sented.
|. INTRODUCTION We introduce also a new SM approach exploiting the con-

SING an electromagnetic (EM) simulator (“fine” model)ceDt of par.tlal SM (PSM). Partial mappings were previously
. T . suggested in the context of neural space mapping [6]. Here, an
inside an optimization loop for the design process of mi-. i X
S o . efficient procedure exploiting a PSM concept is proposed. Sev-
crowave circuits can be prohibitive. Designers can overcome o L
) A - S eral approaches for utilizing response sensitivities and PSM are
this problem by simplifying the circuit through circuit theorySu osted
or by using the EM simulator with a coarser mesh. The spacegg X

mapping (SM) approach [1], [2] relates a fine model to a phys- Exact sensitivities have been developed for nonlinear, har-
icalllapbgsed “cogrpse” surro’ ate. The fine model ma beptii/nrréonic-balance analyses [7], as well as implementable approxi-
ically . ; gate. . y .mations such as the feasible adjoint sensitivity technique [8]. In
intensive, field theoretic, and accurate, while the surrogate Ii a

faster, circuit based, but less accurate, representation. SM in NE 1990s, Alessandet al. spurred the application of the adjoint

ro- . : . .
duces an efficient way to describe the relationship between tr?];t\t,:/;rvlf/em;g]ggvﬁcl)r;?ng t?gi;g?ﬁgg%%ﬂinvﬁ;ﬁ: ;Sﬂiect:huor(_j
fine model and its surrogate. It makes effective use of the fa: pmc;ments environment [10], [11]. These techniques facili-
computation ability of the surrogate, on the one hand, and tﬁzﬁe powerful gradient-based optimizers. Our new work comple-

accuracy of the fine model, on the other. ) T . -
) ) . ments these efforts at gradient estimation for design optimiza-
Surrogates in the context of filter design have been exerl " <ina EM simulations
plified by Snel [3]. Practical benefits of empirical surrogates 9 '

have also been demonstrated by Swanson and Wenzel [4]. They
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function with upper and lower specifications, is the optimal linear optimization problem. Recalling (4) and (5), we state a

design to be determined. useful definition of the mapping Jacobian at it iteration
B. Parameter Extraction (PE) ' 9 (EEJ)T>
g 2 7
P (

PE is a crucial step in any SM algorithm. In PE, an opti- oz ¢
mization step is performed to extract a coarse-model pgint PE
corresponding to the fine-model poiaf that yields the best . L . .
match between the fine model and its surrogate. The informac qes'gnatif: approximation to this Jacobian by the square
tion stored in the design responsemay not be sufficient to de- matrix B € R, i.e.,B ~ Jy(zy).
scribe the system under consideration properly. Thus, using onl)}:rom (3) and (5), we can formulate the system
Ithe design response in the PE may lead t(_) nonuniqueness prob- (:1:<j) B z*) 4 BY) (z(jH) B Z(j)) _0
ems. Therefore, we need to obtain more information about the c f f
system and exploit it to extract the “best” coarse point and avoi
nonunigueness. For example, we may use responses such a
and imaginary parts of parameters in the PE, even though we BORD = _ ), )
need only the magnitude 6f; to satisfy a certain design crite-
rion. Now, we can assemble all the responses needed in thefdfving 9) forh¥), the quasi—Newton step in the fine space
into one vector and define a new term, called a complete Setp%vides the next tentative iteraﬁngH)
basic responses. The complete set of basic responses is desig-
nated byR(x) € RM*!, whereM = mN,.,, m is the number 20D _ g0) 4 ) (10)
of simulation frequency points, anl, is the number of basic oo '
responses. In this context, the fine and its surrogate (coarse) re-
sponses are denoted By andR., respectively. The traditional
PE is described by the optimization problem

(8)

|§|h can be rewritten in the useful form

Ill. PROPOSEDALGORITHMS
A. PE Exploiting Sensitivity

@) We exploit the availability of the gradients of the fine model
and surrogate responses to enhance the PE process. The Jaco-
bian of the fine-model basic responsksatz ¢ and the corre-
sponding Jacobian of the surrogate responkeat z. can be

C. Aggressive SM Approach obtained. Adjoint sensitivity analysis could be used to provide

Aggressive SM solves the nonlinear system the exact derivatives, while finite differences are employed to es-
timate the derivatives if the exact derivatives are not available.

Here, we present a new technique to formulate the PE to take

() — i Gy _
z) = argn_’}:lanRf (.’L‘f ) R.(z.)

A *

f=P(zy) — =z, into account not only the responses of the fine and its surrogate,
=I.— T, but the corresponding gradients as well.
-0 (3) Through the traditional PE process, as in (2), we can obtain

the pointz. that corresponds to;, such that
for z¢, whereP is a mapping defined between the two model
spaces ang. € R"*! is the corresponding point in the coarse
spaceg. = P(zy). First-order Taylor approximations are giverb
by

R; ~R,. (11)

ifferentiating both sides of (11) with respectitg, we obtain

G) G) ) oRT\" _ (orT\" [oaT\"
P(zf)zp(zf)+Jp(zf)(a;f—zf). (4) ) =\ (aé) . (12)

This can be described as

Using (7), the relation (12) can be simplified to [12]

z.~ z9 + Jp (I;j)) (:I:f — :1:5?)‘ (5) Jr~J.B (13)

Through PE

whereJ; andJ. € RM*", Relation (13) assumes thdt is
full rank andM > n, whereM is the dimensionality of both
R andR.. Solving (13) forB yields a least-squares solution

7\ 7T 12
() e
) = B= ()7l (14)

where the Jacobian d? at thejth iteration is expressed by

Equation (5) illustrates the nonlinearity of the mapping, where At the jth iteration we obtain:\?’ through a gradient param-
z¢) is related taxfﬁ) through the PE process which is a noneter extraction (GPE) process. In GPE, we match not only the
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PSM [15]. It chooses the parameters that the coarse-model response
is sensitive to.
Xs x M . .
> Ppg,, > C. Mapping Update Alternatives
x} }xc If we have exact derivatives of both the fine and coarse model,
Y » we can use them to obtaiB at each iteration using a least-
squares solution as in (14). Note that this matrix can be itera-
Fig. 1. Partial space mapping (PSM). tively fed back into the GPE process and refined before making
a step in the fine-model space. We can also use (19) to update

PSM

responses, but also the derivatives of both models through gﬁef ) q h derivati . h
optimization problem If we do not have exact derivatives, various approaches to

initializing or constrainingB and BY>™ can be devised:; for
[el Ael .. AeZ]TH 7 A>0 example, we can use finitg differences (perturbations). Eith_er
matrix may be updated using a Broyden update [16]. Hybrid

.'IIEJ) = arg min
T.

herel i iahting f B d (15) schemes can be formally developed following the integrated
where) is a weighting factorEl = [er ez . .. ex], an gradient approximation approach to optimization by Baneter
e _R (z(j)) ~ Ru(z) al. _[17]. One hybrid approach inc_c_Jr_porat(_es the use of pertur-
0 fA\rs e\te bations and Broyden formula. Utilizing this approach reduces
E=J; (z;ﬁ) — J.(z.)B. (16) the effqrt of cglpylatlng exact derlvatl_ves. Perturbggﬁns are used
to obtain an initial good approximation 8 and B at the

The nonuniqueness in the PE may lead to divergence or §§rting point. Then, the Broyden formula is used to update both
cillatory behavior. Exploiting available gradient information enMatrices in the subsequent iterations.
hances the uniqueness of the PE process. It also reflects the idéah the assumption that the fine and coarse models share the

of multipoint extraction (MPE) [13], [14] in which simultaneousS@me physical background, Bagt al. [18] suggested thaB
matching of a number of points of both spaces takes place. couldbe better conditioned, in the PE process, ifitis constrained
to be close to the identity matrik by

B. PSM

Utilizing a reduced set of the physical parameters of the B = arg mén
coarse space might be sufficient to obtain an adequate surrogate
for the fine model. A selected set of the design parameters ¥f@erer is a weighting factor ané; andAb; are theith columns
mapped onto the coarse space, and the rest of thénc (z;) ©Of £ andAB, respectively, defined as
are directly passed. The mapped coarse parameters are denoted E—J.— J.B
by zPSM ¢ RF¥1 | < n, wheren is the number of design fo e
parameters. PSM is illustrated in Fig. 1. It can be represented AB=B—1I. (22)
in the matrix form by

7112
el - eTnAb] - nAv] | (21)

2

The analytical solution of (21) is given by

PSM —
o P e an B= (Jld+0’D)” (JLa 4 PD) . (@9)
In this context, (13) becomes D. Proposed Algorithms
J; ~ JPSMpPSM (18) Algorithm 1 Full Mapping/GPE/Jacobian update

Step 1 Setj = 1. Initialize B = I for the PE process. Obtain
whereBYSM ¢ gkxn andeSM € RMxk is the Jacobian of the optimal coarse-model desigfand use it as the initial fine-

the coarse model at”S™. Solving (18) forB™ yields the model point
least-squares solution at tlith iteration
a b :1:;1) =z = arg n:}:in U(re(z.)). (24)
-1 . e

PSM(j) _ PSM(5)T 7PSM(j) PSM(;)T 7(5) o S ) )
B V= (Jc I ) S Jf - (19) Comment Minimax optimization is used to obtain the optimal

coarse solution.
Relation (9) becomes underdetermined siBCE™ is afatrect- step 2 Execute a preliminary GPE step as in (15).

angular matriX, i.e., the number of columns is gr_eater than tbﬁ)mment Match the responses and the Corresponding gradi_
number of rows. The minimum norm solution ) is given gnts.

by Step 3 Refine the mapping matriB using Jacobians (14).
, ' ) 1 ) Comment A least-squares solution is used to refine a square
b e = BPSMOT (BPSM(])BPSM(”T) (—f(” . matrix B using Jacobians.

(20) Step 4 Stop if
The coarse-model parameterS°™ used in the PE can be

determined by the sensitivity analysis proposed by Baredlak: Hf G) < e (25)

< e or HRSJ) - R
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CommentLoop until the stopping conditions are satisfied. 2
Step 5 Solve (9) forh?.

Step 6 Find the nextz;’“) using (10). b3

Step 7 Perform GPE as in (15). 1H .

Step 8 UpdateB") using (14).

CommentA least-squares solution is used to updBtat each 057 i

iteration exploiting Jacobians.

Step 9 Setj = j + 1 and go to Step 4. s O |
-0.5 1

Algorithm 2 Partial SM/GPE/Jacobian update
Step 1 Setj = 1. Initialize BY3™ = [I"5M0] for the PE 17
process. Obtain the optimal coarse-model desiggand use it

as the initial fine-model point as in (24). 15y 1
Step 2 Execute a preliminary GPE step as in (15). = . . . . . . .

Step 3 Refine the mapping matriB"™ using (19). 2 -5 -1 05 0 05 1 15 2
CommentA least-squares solution is used to refine a rectan X1

gular matrixB¥>™ using Jacobians.

. Fig. 2. Contour plot of the “coarse” original Rosenbrock banana function.
Step 4 Stop if (25) holds. g P g

CommentLoop until the stopping conditions are satisfied.
Step 5 Evaluateh'”) using (20).

CommentA minimum norm solution for a quasi-Newton step
rY in the fine space is used.

Step 6 Find the nextz/*" using (10).

Step 7 Perform GPE as in (15).

Step 8 Use (19) to updat@”SM(),

CommentA least-squares solution is used to updBte®™ at
each iteration.

Step 9 Setj = j + 1 and go to Step 4.

Algorithm 3 Partial SM/PE/Hybrid approach for mapping
update

Step 1 Setj = 1. Initialize B™™ = [1"5M0] for the PE
process. Obtain the optimal coarse-model desiyand use it 2 . . L ' : . .
as the initial fine-model point as in (24). = 15 -1 05 0 05 1 15 2
Step 2 Execute a preliminary traditional PE step as in (2). 1

Step 3 Refine the mapping matr.lBP.SM using (19)'. Fig. 3. Contour plot of the “fine” shifted Rosenbrock banana function.
CommentA least-squares solution is used to refine a rectan-

gular matrixB¥SM using Jacobians.

Step 4 Stop if (25) holds.

CommentLoop until the stopping conditions are satisfied.
Step 5 Evaluateh’) using (20).

Step 6 Find the nextx&”l) using (10).

Step 7 Perform traditional PE as in (2). Ry =100 ((z0 + o) — (21 + a)?) > + (1 = (21 + ay))>
Step 8 UpdateB"SM() using a Broyden formula. ! (724 a2) = (w14 a)’)" + (1 = (@1 + )

be a “coarse” model. The optimal solutiords = [1.0  1.0]".
A contour plot is shown in Fig. 2.

Case 1: Shifted Rosenbrock Problemie propose a “fine”
model as a shifted Rosenbrock function

27
CommentA hybrid approach is used to updas ™. where 7)
Step 9 Setj = j + 1 and go to Step 4.
a= [0‘1] - {_Ooﬂ. 28)
The output of the algorithms is the fine space mapped optimal @2 :
designz; and the mapping matriB (Algorithm 1) or BY5M o o .
(Algorithfms 2 and 3). The oppmal fine-model solution is; = z; —a = [1.2 0.8]"
(see Fig. 3 for a contour plot).
IV. EXAMPLES We apply Algorithm 1. Exact “Jacobiand’s andJ. are used

in the GPE process and in mapping update. The algorithm con-
A. Rosenbrock Banana Problem [12], [19] verges in one iteration to the exact solution (see Table I).

Test problems based on the classical Rosenbrock banangase 2: Transformed Rosenbrock Probler:fine” model
function are studied. We let the original Rosenbrock functionis described by the transformed Rosenbrock function

R, = 100(wy — 27)* + (1 — x1)? (26) Ry = 100(up — u3)? + (1 —u1)? (29)
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TABLE | TABLE I
“SHIFTED” ROSENBROCKBANANA PROBLEM “T RANSFORMED” ROSENBROCKBANANA PROBLEM
Iteration  x [ BY o xP  RY Iteration ~ x 19 BV P X0 RO

= 1.0 1.0
1.0 [1.0} 314 0 10 0 108.3

0 1.0 1.0
S 0.526 -0.474 1.01 -0.05 0.447 1.447
[0.8] [-o0.2 1.0 0.0 0.2 12 ! [1384 [0384} {0-01 101 } [-0-385 [0615] 5119
1 1.2 0.2 0.0 1.0 -0.2 0.8 0 1185 0.185 096 -013 -0218 123
L0 o 2 1.178 0.178 -0.096 1.06 -0.187 0.427| 44E-3
' [ ] 0.967 ~0.033 1.09 -0.19 0.0429 1273
[1.0] 0 3 0.929 -0.071 0.168  0.92 0.0697 0.497| 1.8E-6
1.001 0.001 1.10001 -0.1999] [-0.001] [1.2719
2 . T . : : . . 4 1.001 0.001 0.1999  0.9001 -0.002] [04952] SE-10
1.00002 0.2E-4 L1 -02 03E-4] [1.2718
1.5F 5 1.00004 0.4E-4 02 09 0.SE-4| |04951| 3E-17
1.0 0.IE-8 11 -02 0.2E-8
Ir 6 1.0 0.3E-8 02 09 0.3E-8 x 9E-29
051
«— L —» «— L, —»
O O M) )
Q 0 _ l L
-0.5f Zn —> I G 1\ G T C: 2 R~10Q
-1r
e &, 0 9
~1.5F Fig. 5. Two-section impedance transformer: “fine” model.
) 1 1 1 L L 1 L L L >
2 15 -1 05 0 0.5 1 1.5 2 o OI ! 'O' 2 0O
X1
Zip ——>
Fig. 4. Contour plot of the “fine” transformed Rosenbrock banana function. " Z 2 § R;=10Q
where ° O O O
1.1 —=0.2 0.3 30 Fig. 6. Two-section impedance transformer: “coarse” model.
“lo2 09 || 03| (30)
TABLE Il
The exact solution evaluated by the inverse transformation $ARSEMODEL SENSITIVITIES WITH RESPECT TO THEDESIGN PARAMETERS
:c? — [1'271 8447 0.485 145 6]T to seven decimals. A con- FOR THE CAPACITIVELY LOADED IMPEDANCE TRANSFORMER
tour plot is shown in Fig. 4. Applying Algorithm 1, we get a ]
solution, to a very high accuracy, in six iterations (see Table Il Parameter S;
for details). I 0.98
B. Capacitively Loaded 10:1 Impedance Transformer [20] L, 1.00
We apply Algorithm 2 to a two-section transmission line (TL) Z 0.048
10:1 impedance transformer. We consider a “coarse” model as 7 0.048

an ideal two-section TL, where the “fine” model is a capacitively

loaded TL with capacitore’, = Cp = C3 = 10 pF.The fine Levenberg—Marquardt algorithm for nonlinear least-squares op-

and coarse models are shol\{vn (ijnIFigs. 5 arc;d 6, rgshpectively. Rization available in the Matlab Optimization Toolbox [22].
sign parameters are normalized lengthsand L, with respect -0 1. Based on a sensitivity analysis [15] for the design

tothe qua_rte_r—\_/vave lengily, atthe centerfre_que_ncy 1GHz, andparameters of the coarse model shown in Table Il we note that
characteristic impedanceg andZ,. Normalization makes the the normalized lengthsl}; L,] are the key parameters. Thus

_ T
p_roblem v_vgll posed. Thug; = [L1 Lo Zi1 Z] . De- we considerrPSM = [, LZ]T, while 5 = (2 ZQ]T
sign specifications are are kept fixed at the optimal values, i.&, = 2.236 15 Q and
S11] < 0.5, for 0.5 GHz < w < 1.5 GHz Zs = 4.472 30 2. We employ adjoint sensitivity-analysis tech-

niques [23] to obtain the exact Jacobians of the fine and coarse
with 11 points per frequency sweep. We utilize the real andodels. We initializeB™>™ by using the Jacobian information
imaginary parts of5;; in the GPE (15). The fine and surrogateof both models at the starting point as in (19). The algorithm
responses can be easily computed as a function of the designverges in a single iteration (two fine-model evaluations). The
parameters using circuit theory [21]. We solve (15) using tlemrresponding responses are illustrated in Figs. 7 and 8, respec-
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0.8 1@
®
0.6 L) ‘\
10! —
_ , =: ‘\\
5 04 \ ° Prara-N . / i -
A
1 3 b 10° \‘
02
/ N
[ ]

0 10°
0.5 0.7 0.9 1.1 1.3 1.5
frequency (GHz)

0 1 2
iteration

Fig. 9. ||z. — =z:||» versus iteration for the capacitively loaded 10:1

Fig.7. Optimal coarse-modeltargetresponse (—) and the fine-model respotﬁggsformer withl., and L as the PSM coarse-model parameters.

at the starting point() for the capacitively loaded 10:1 transformer with and
L, as the PSM coarse-model parameters.

0.3

0.8 0.25
0.2
\
° 0.1
04 N Y, \
b4 0.05 \
0.2 0
\'
° -0.05 | >

iteration

1S

0.5 0.7 0.9 1.1 1.3 1.5 . . . . .
Fig. 10. U versus iteration for the capacitively loaded 10:1 transformer with

frequency (GHz) L, andL, as the PSM coarse-model parameters.

Fig.8. Optimal coarse-modeltarget response (—) and the fine-model response ) ) o
at the final designa() for the capacitively loaded 10:1 transformer with and ~ fine-model evaluations). The final mapping is

L, as the PSM coarse-model parameters.
BPSM —[1.371 0.909 0.0033 0.0055].
tively. The final mapping is
As we can see, changes ihq]] represented by the first ele-
gPsM _ [ 1075 0087 0.006  0.002 ment inBSM are significant. However, the second parameter
0.049 1.139 —0.008 0.006 | [L.] is affected also. This arises from the fact thiat [L»] have
the same physical effect; namely, that of length in a TL.

This result confirms the sensitivity analysis presented in Case 3: We apply Algorithm 2 forrTSM = [L,]. The result
Table Ill. It supports our decision of taking into account onlys similar to Fig. 8 and it converges in a single iteration (two
[L: L], represented by the first and the second columns fime-model evaluations). The final mapping is
BFSM | as design parameters. As is well known, the effect of
the capacitance in the fine model can only be substantially ~ B"*™ =[0.8989 1.186 —0.0043 0.0087].
compensated by a change of the length of a TL. Therefore,
changes of ¥, 7,] hardly affect the final response. Asin case 2, changes in one parametks] [n this case, have

The reduction of|z. — z}||» versus iteration is shown in a dominant role. This affectd | ], the parameter which shares
Fig. 9. The reduction of the objective functidhin Fig. 10 also the same physical nature.
illustrates convergence (two iterations). The initial and final designs for all three cases are shown in

Case 2: We apply Algorithm 2 forzESM = [L;]. The result Table IV. We realize that the algorithm aims to rescale the TL
is similar to Fig. 8. Convergence is in a single iteration (two lengths to match the responses in the PE process (see Fig. 7). In
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TABLE IV 0 . =
INITIAL AND FINAL DESIGNS FOR THECAPACITIVELY LOADED [ ] b4
IMPEDANCE TRANSFORMER °
-10 ry
(1) 0! ) ®
X, X, X
Parameter xf(o) / / / \ ) /
(Ly and L) (Ly) (L2) m 20 . 'Y
&S]
L 1.0 0.8995 0.8631  0.8521 £ \._,
4 3 °
L, 1.0 0.8228 0.9126 0.8259 °
Z 2.23615 2.2369 2.2352 2.2365
-40 o)
V) 4.47230 4.4708 4.4716 4.4707 \ f
L, and L, are normalized lengths _50
. 5 7 9 11 13 15
Z; and Z, are in ohm frequency (GHz)

Fig. 13. Optimal OSA90/hope coarse target response (—garfthe-model
response at the starting point)(for the bandstop microstrip filter using a
fine frequency sweep (51 points) with, and L., as the PSM coarse-model
parameters.

TABLE V
COARSEMODEL SENSITIVITIES WITH RESPECT TODESIGN PARAMETERS
FOR THE BANDSTOP MICROSTRIPFILTER

Parameter S,

W 0.065

W> 0.077

Lo 0.677

L 1.000

L, 0.873

Fig. 11. Bandstop microstrip filter with open stubs: “fine” model.

is used for a 532 feeding line. The design parameters afe=
i‘*Lco"FLcoﬂ) o [Wy Wy Lo Ly Lo ]T. The design specifications are

|S21| <0.05 for 9.3 GHz < w < 10.7 GHz
|S21]| >0.9 for 12 GHz < w andw < 8 GHz.

Sonnet'sem[24] driven by Empipe [25] is employed as the
fine model, using a high-resolution grid with a 1 mill mil cell
size. As a coarse model, we use simple TLs for modeling each
microstrip section and classical formulas [21] to calculate the
all cases, bothl}; L] are reduced by similar overall amountscharacteristic impedance and the effective dielectric constant of
as expected_ each TL. Itis seen thdtcg =L+ WO/Z, La=L1+ Wo/z,

By carefully choosing a reduced set of design parameters, &dLco = Lo + W1/2 + W5 /2. We use OSA90/hope [25]
can affect other “redundant” parameters and the overall circiilt-in TL elements TRL. The fine model and its surrogate
response as well, which implies the idea of tuning. Neverthele§§arse model are illustrated in Figs. 11 and 12, respectively.
the use of the entire set of design parameters should give the be$tsing OSA90/hope, we can get the optimal coarse solution at
result. 10 GHz ase* = [4.560 9.351 107.80 111.03 108.75]"
(in mils). We use 21 points per frequency sweep. The coarse-
and fine-model responses at the optimal coarse solution are
shown in Fig. 13 (fine sweep is used only for illustration).

Algorithm 3 is applied to a symmetrical bandstop microstrifgVe utilize the real and imaginary parts 8f; and.Sy; in the
filter with three open stubs. The open-stub lengthslarel,, traditional PE. Sensitivity analysis for the coarse model is given
L, and the corresponding stub widths d#&, W», W;. An in Table V. During the PE, we considefSM = [L; L,]*
alumina substrate with thickneds = 25 mil, width W, = while T; = (W1 W, LO]T are held fixed at the optimal
25 mil, dielectric constant,, = 9.4, and loss tangent 0.001 coarse solution. Finite differences estimate the fine and coarse

Fig. 12. Bandstop microstrip filter with open stubs: “coarse” model.

C. Bandstop Microstrip Filter With Open Stubs [6]
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response at the final desigm)(for the bandstop microstrip filter using a E'g' 12'L Il _hIfDHS2N\|/erSUS |terat|don| for the bandstop microstrip filter using
fine frequency sweep (51 points) with, and L, as the PSM coarse-model ~! andL, as the coarse-model parameters.

parameters.
TABLE VI
INITIAL AND FINAL DESIGNS FOR THEBANDSTOP MICROSTRIP
Jacobians used to initialiZ8" >, as in (19). A hybrid approach FILTER USING L; AND L,
is used to updat@”SM at each iteration.
Algorithm 3 converges in five iterations. The PE execution Parameter x© x>

time for the whole process is 59 min on an IBM-IntelliStation
machine. The optimal coarse-model response and the final de- wi 4.560 7.329
sign fine response are depicted in Fig. 14. The convergence of W, 9.351 10.672
the algorithm is depicted in Fig. 15, where the reduction of Lo 107.80 109.24
|lz. — z%||2 versus iteration is illustrated. The initial and final

. e : ' O L 111.03 115.53
design values are shown in Table VI. The final mapping is given

L, 108.75 111.28

by

All values are in mils

BPSM _ 0.570 0.168 0.209 0.911 0.214
| —0.029 0.154 0.126 —0.024 0.470|"

TABLE VII
. INITIAL AND FINAL DESIGNS FOR THEBANDSTOP MICROSTRIPFILTER
We notice that[.; L»], represented by the last two columns, are USING A FULL MAPPING
dominant parameters.
. We run Algorithm 3 u_sing all design paramgters in the EE and Parameter x X
in calculating the quasi-Newton step in the fine space, i.e., we
use a full mapping. The algorithm converges in five iterations, w 4.560 8.7464
however, the PE process takes 75 min on an IBM-IntelliStation W, 9.351 19.623
machme. The |_n|t|al and final designs are givenin Table VII.The Lo 107.80 97.206
final mapping is
L, 111.03 116.13
0.532  —0.037 0.026  0.017 —0.006 L 108.75 113.99

—0.051 0.543 0.022 —0.032 0.026
B = 0415 0.251 1.024 0.073 0.011
0.169 —0.001 —-0.022 0.963 0.008
—0.213 -0.003 —-0.045 —-0.052 0.958

All values are in mils

D. Comparison With Previous Approaches

The reduction ofiz. — z* ||, versus iteration is shown in Fig. 16. All SM-based algorithms, by their very nature, are expected
The notion of tuning is evident in this example also, wher®@ Produce acceptable designs in a small number of fine-model
the various lengths and widths which constitute the designal§iédluations, typically 3—10. Hence, a basis for comparison must

parameters (see Fig. 11) have obvious physical interrelation®€ Simplicity, ease of programming, robustness on many ex-
amples and, in particular, avoidance of designer intervention.

Our extensive convergence results (Tables | and Il, Figs. 9, 10,

15, and 16) of our gradient-based proposal demonstrate that we

averted false parameter extractions, do not require sophisticated
1AMD Athlon, 400 MHz. programming, and do not rely on designer intervention.
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Fig. 16. ||z. — z:||» versus iteration for the bandstop microstrip filter using
a full mapping.
[13]
V. CONCLUSIONS
(14]

We present a family of robust techniques for exploiting
sensitivities in EM-based circuit optimization through SM. We [15]
exploit a PSM concept where a reduced set of parameters is
sufficient in the PE process. Available gradients can initialize
mapping approximations. Exact or approximate Jacobians 6%6]
responses can be utilized. For flexibility, we propose different17
possible “mapping matrices” for the PE processes and SM
iterations. Finite differences may be used to initialize they;g
mapping. A hybrid approach incorporating the Broyden for-
mula can be used for mapping updates. Our approaches have
been tested on several examples. They demonstrate simplici[tl)?]
of implementation, robustness, and do not rely on designgeo]
intervention.

Final mappings are useful in statistical analysis and yield op-
timization. Furthermore, the notion of exploiting reduced sets of21]
physical parameters reflects the importance of the idea of posiZ2]
production tuning. [23]
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